Accessing thermoplastic processing windows in metallic glasses using rapid capacitive discharge

نویسندگان

  • Georg Kaltenboeck
  • Thomas Harris
  • Kerry Sun
  • Thomas Tran
  • Gregory Chang
  • Joseph P. Schramm
  • Marios D. Demetriou
  • William L. Johnson
چکیده

The ability of the rapid-capacitive discharge approach to access optimal viscosity ranges in metallic glasses for thermoplastic processing is explored. Using high-speed thermal imaging, the heating uniformity and stability against crystallization of Zr35Ti30Cu7.5Be27.5 metallic glass heated deeply into the supercooled region is investigated. The method enables homogeneous volumetric heating of bulk samples throughout the entire supercooled liquid region at high rates (~10(5) K/s) sufficient to bypass crystallization throughout. The crystallization onsets at temperatures in the vicinity of the "crystallization nose" were identified and a Time-Temperature-Transformation diagram is constructed, revealing a "critical heating rate" for the metallic glass of ~1000 K/s. Thermoplastic process windows in the optimal viscosity range of 10(0)-10(4) Pa · s are identified, being confined between the glass relaxation and the eutectic crystallization transition. Within this process window, near-net forging of a fine precision metallic glass part is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating.

The work proposed a novel thermoplastic forming approach-the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of s...

متن کامل

Aspects of the mechanics of metallic glasses

Metallic glasses are amorphous materials that possess unique mechanical properties, such as high tensile strengths and good fracture toughnesses. Also, since they are amorphous, metallic glasses exhibit a glass transition, and at temperatures above this glass transition, they soften dramatically and are therefore amenable to net-shape thermoplastic forming processes. This combination of superio...

متن کامل

Thermoplastic Forming and Related Studies of the Supercooled Liquid Region of Metallic Glasses

The thermoplastic formability (TPF) of metallic glasses was found to be related to the calorimetrically measured crystallization temperature minus the glass transition temperature, Tg Tx = ΔT. Alloy development in the ZrTiBe system identified a composition with ΔT = 120 °C. Many alloys with ΔT > 150 °C and one alloy, Zr35Ti30Be27.5Cu7.5, with ΔT = 165 °C were discovered by substituting Be with ...

متن کامل

Thermomechanical Behavior of Molded Metallic Glass Nanowires

Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits, and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is d...

متن کامل

Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties.

The quantitative model proposed here for nanoimprinting by thermoplastic compression molding is focused on bulk metallic glasses (BMGs), but it is also applicable to polymers and other thermoplastic materials. In our model the flow and pressure fields are evaluated using the lubrication theory, and the effect of molding pressure, BMG viscosity, and capillary pressure on the spatial distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014